Chapter 11 - Genetics & Meiosis Review Questions (w/ Answers)

Modified True/False

Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

- A trait is a specific characteristic that <u>varies</u> from one individual to another.
 Gregor Mendel concluded that the tall plants in the P generation passed the factor for <u>tallness</u> to the F₁ generation.
- 3. An organism with a dominant allele for a particular form of a trait will <u>sometimes</u> show that trait.
- 4. True-breeding plants that produced axial flowers were crossed with true-breeding plants that produced terminal flowers. The resulting offspring produced terminal flowers because the allele for terminal flowers is recessive.
- 5. When alleles segregate from each other, they join.
- 6. If the alleles for a trait did not segregate during gamete formation, offspring would <u>always</u> show the trait of at least one of the parents.
- 7. The principles of probability can <u>explain</u> the numerical results of Mendel's experiments.
- 8. The probability that a gamete produced by a pea plant heterozygous for stem height (*Tt*) will contain the recessive allele is <u>100%</u>.
- 9. If roan cows and roan bulls are mated, according to the principle of codominance, <u>25%</u> of the offspring are expected to be roan.
- 10. Coat color in rabbits is determined by a single gene that has <u>multiple alleles</u>.
- 11. If an organism has 16 chromosomes in each of its egg cells, the organism's <u>diploid</u> number is 32.
- 12. If an organism is heterozygous for a particular gene, the two different alleles will be separated during <u>anaphase II</u> of meiosis, assuming that no crossing-over has occurred.
- 13. Mitosis results in two cells, whereas meiosis results in <u>one cell</u>.

Completion

Complete each statement.

- 14. The plants that Gregor Mendel crossed to produce the F₁ generation made up the ______ generation.
- 15. The different forms of a gene are called ______.
- 16. If the allele for shortness in pea plants were dominant, all the pea plants in Mendel's F₁ generation would have been _____.
- 17. If the alleles for traits in pea plants did not segregate during gamete formation, offspring that were recessive for a trait could be produced only by crossing two plants that were ______ for that trait.
- 18. ______ is the likelihood that a particular event will occur.

19. If you flip a coin five times and it comes up heads each time, the probability that it will come up heads the next time is ______.

Figure 11-1

- 20. In the Punnett square shown in Figure 11-1, the genotypes of the offspring are ______.
- 21. Pea plants that are *TT*, ______, or *tt* have different genotypes.
- 22. When two heterozygous tall pea plants are crossed, the expected genotype ratio of the offspring is
- 23. The principle of independent assortment states that ______ for different traits can segregate independently during the formation of gametes.
- 24. If pea plants that are homozygous for round, yellow seeds (*RRYY*) were crossed with pea plants that are heterozygous for round, yellow seeds (*RrYy*), the expected phenotype(s) of the offspring would be
- 26. An organism's gametes have ______ the number of chromosomes found in the organism's body cells.
- 27. Crossing-over occurs during the stage of meiosis called ______.
- 28. The relative locations of each known gene can be shown on a _____ map.

Short Answer

- 29. Define genetics.
- 30. What attributes of the garden pea plant made it an excellent organism for Gregor Mendel's genetic studies?
- 31. What might have caused Gregor Mendel NOT to conclude that biological inheritance is determined by factors that are passed from one generation to the next?
- 32. How many recessive alleles for a trait must an organism inherit in order to show that trait?

			1	RrYy		7
		RY	Ry	rY	ry	
Rr Yy	RY	RRYY	RRYy	RrYY	R rYy	Seed Shape <i>R</i> – round <i>r</i> – wrinkled Seed Color
	Ry	RRYy	RRyy	RrYy	Rryy	
	rY	RrYY	R rYy	rr YY	rrYy	Y – yellow y – green
	ry	RrY y	Rryy	rrYy	rryy	

Figure 11-2

- 33. What is the phenotype ratio of the offspring in the Punnett square shown in Figure 11-2?
- 34. A pea plant heterozygous for height and seed color (TtYy) is crossed with a pea plant heterozygous for height but homozygous recessive for seed color (Ttyy). If 80 offspring are produced, how many are expected to be tall and have yellow seeds?
- 35. What might happen if the gametes of a species had the same number of chromosomes as the species' body cells?
- 36. How many sets of chromosomes are in a diploid cell?
- 37. Define homologous chromosomes.
- 38. What happens to the number of chromosomes per cell during meiosis?
- 39. Contrast the cells produced by mitosis with those produced by meiosis.

Chapter 11 - Genetics & Meiosis Answer Section

MODIFIED TRUE/FALSE

1.	ANS:	Т	PTS:	1
2.	ANS:	Т	PTS:	1
3.	ANS:	F, always		
	PTS:	1		
4.	ANS:	F, dominant		
	PTS:	1		
5.	ANS:	F, separate		
	PTS:	1		
6.	ANS:	Т	PTS:	1
7.	ANS:	Т	PTS:	1
8.	ANS:	F, 50%		
	PTS:	1		
9.	ANS:	F, 50%		
	PTS:	1		
10.	ANS:	Т	PTS:	1
11.	ANS:	Т	PTS:	1
12.	ANS:	F, anaphase I		
	PTS:	1		
13.	ANS:	F, four cells		
	PTS:	1		
COMPLE	ΓΙΟΝ			
14.	ANS:	Р		
	PTS:	1		

15.	ANS:	alleles
15.	AND.	ancies

PTS: 1

16. ANS: short

PTS: 1

17. ANS: recessive

PTS: 1

18. ANS: Probability

19.	PTS: ANS: 1/2 50%	1
20.	PTS: ANS:	1 <i>TT</i> and <i>Tt</i>
21.	PTS: ANS:	1 Tt
22.	PTS: ANS:	1 1 <i>TT</i> : 2 <i>Tt</i> : 1 <i>tt</i>
23.	PTS: ANS:	1 genes
24.	PTS: ANS:	1 round, yellow seeds
25.	PTS: ANS:	1 white
26.	PTS: ANS:	1 half
27.	PTS: ANS:	1 prophase I
28.	PTS: ANS:	1 gene
	PTS:	1

SHORT ANSWER

29. ANS:

Genetics is the scientific study of heredity.

PTS: 1

30. ANS:

Garden pea plants produce many offspring, they have traits that come in two forms, and crosses between the plants can be controlled easily.

PTS: 1

31. ANS:

Answers may vary. If the F_1 pea plants had had traits of neither parent, Mendel might not have concluded that factors for traits are passed from one generation to the next.

PTS: 1

32. ANS:

An organism must inherit two recessive alleles for a trait in order to show that trait.

PTS: 1

33. ANS:

The phenotype ratio is 9 round, yellow peas : 3 round, green peas : 3 wrinkled, yellow peas : 1 wrinkled, green pea.

PTS: 1

34. ANS:

Thirty of the offspring are expected to be tall and have yellow seeds.

PTS: 1

35. ANS:

When the gametes fused during fertilization, the offspring would have more chromosomes in their body cells than their parents have. As a result, the species' chromosome number would not be constant.

PTS: 1

36. ANS:

A diploid cell has two sets of chromosomes.

PTS: 1

37. ANS:

Homologous chromosomes are the two sets of chromosomes found in a body cell—one set inherited from the male parent and the other inherited from the female parent.

PTS: 1

38. ANS:

The number of chromosomes is cut in half.

PTS: 1

39. ANS:

Mitosis produces diploid body cells, whereas meiosis produces haploid gametes.

PTS: 1